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Fig. 1. Schematic representation of HVAC system.

The problem formulation is:

min
qi,Tda,Tma,s

−
Nz∑
i=1

((cairqi(Tda − Ti))− Pmaxi ) + ρ ·

(
cair · s ·

Nz∑
i=1

qi

)
(IV.54a)

s.t. cair · qi · (Tda − Ti)− Pmaxi ≤ 0, i = 1, . . . , Nz
(IV.54b)

− s ≤ Tda − Tma ≤ s, (IV.54c)

qmini ≤ qi ≤ qmaxi , (IV.54d)

Tminda ≤ Tda ≤ Tmaxda , (IV.54e)

Tminma ≤ Tma ≤ Tmaxma , (IV.54f)
s ≥ 0. (IV.54g)

Constraint (IV.54b) requires the heat supply capacity to be
bounded by the required capacity. The thermal power required
to raise the inlet mixed air temperature Tma to the discharge
air temperature Tda is given by q · |Tda − Tma|. Assuming
that there are no air leaks associated to the transport of air
between the AHU and VAV system, the total AHU flow rate
equals the air supplied to all the VAV boxes. The thermal
power consumption of each VAV reheat coil unit is determined
based on the heat transfer between the inlet and outlet air flow.
The power required by the VAV to heat up the inlet air flow at
temperature Tda (from the outlet of AHU) to reach the required
air temperature Ti at the ith zone is given by cair ·qi·(Tda−Ti).
The optimization model (IV.54) is a simplified version of the
problem presented in [3]. In particular, we do not include other
components such as the electrical power of supply fan and the
air recycle system.

B. Software Implementation

We implemented the proposed algorithm in PIPS-NLP,
an object-oriented interior-point framework written in C++
that facilitates the development of algorithmic strategies [7].
The proposed algorithm solves a sequence of barrier sub-
problems. Precautions are taken to ensure that barrier terms
and associated derivatives remain bounded, as explained in
[5]. Our implementation allows us to compare the following
algorithmic strategies:
� Aug: solves the augmented system (II.6) with default

filter line-search setting that uses objective function and
constraint violation (II.3) as filter entries.

� AugAL: solves the augmented system (II.6) and uses
augmented Lagrangian function (II.4) and constraint vi-
olation (II.3) as filter entries.

� SCAL: solves the Schur system (II.10) and uses the
AL function (II.4) and constraint violation (II.3) as filter
entries.

For the Aug and AugAL strategies, we compute the search
step by solving the linear system (II.6) using a symmetric
indefinite factorization implemented in MA27 [26]. We trig-
ger primal regularization if the inertia reported by MA27 is
not correct [5]. For the SCAL strategy, we use a Cholesky
factorization to factorize the Schur complement matrix Sk in
(II.11) and to perform the corresponding backsolve (II.10).
We use two different packages to perform the factorization
of Sk. We use a dense Cholesky factorization using libraries
dpotrf and dpotrs from the LAPACK suite [27] and we
use the CHOLMOD package [28] to perform a sparse Cholesky
factorization. If the Schur complement matrix is not positive
definite, we update the primal regularization parameter δwk
until Sk becomes positive definite and CT holds. We revert
to solve the augmented system with MA27 if we encounter
a feasible but non-optimal iterate (hk = 0 holds at a non-
stationary point). Such a case was not observed in our tests,
as is quite common in practice. We summarize the strategies
in Table I. Parameter β of the DPT test (II.8) plays a key role

TABLE I
SUMMARY OF ALGORITHMIC STRATEGIES

Method LinSys Solver Filter Dual Reg.
Aug (II.6) MA27 (f, h) No

AugAL (II.6) MA27 (AL, h) Yes
SCALD (II.10) LAPACK (AL, h) Yes
SCALS (II.10) CHOLMOD (AL, h) Yes

in the performance of the algorithm. A small β value requires
dual regularization to be sufficiently small but it may create
an ill-conditioned Schur system (II.10) because it will require
a large δck in (II.11). On the other hand, a large β value will
increase the chance to invoke the restoration phase, since γh

2�2β
in (III.37) becomes larger. Currently, we fix β = 0.5 in our
implementation, which gives γh

2�2β = γh in (III.37).
We verified the implementation of our proposed algorithm

(AugAL) by performing benchmark performing against the
standard filter line-search implementation of IPOPT (Aug).
For this, we performed tests on 287 CUTEr instances (small
to medium instances) [29]. The performance profiles are
presented in Figure 2. In summary, AugAL can solve 80%
of the instances while Aug can solve 91%. The failed cases
either require feasibility restoration or reach the maximum
number iterations allowed. Given than our implementation is
non-optimized (not tuned), we deem this off-the-shelf perfor-
mance as acceptable. These preliminary benchmarking results
highlight, however, the fact that AugAL is designed as a
method to tackle specific problem classes and will likely be
restricted in performance compared to a general method such
as Aug. In particular, the key trade-off arises from the fact
that primal-dual regularization used in AugAL enables more
modular linear algebra and faster embedded implementations
(compared to Aug) but this comes at the expense of general
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performance. In the following results we present an actual
application to highlight these trade-offs and show that AugAL
also provides flexibility to perform algorithmic tuning.

Fig. 2. Performance profiles for Aug and AugAL algorithms.

C. Results

We now test the algorithmic strategies using an HVAC
system with 19 different zones. The optimization model has 22
variables, 21 inequality constraints, and 22 variable boundary
constraints. After introducing slack variables into the system,
the dimension of the augmented matrix (II.6) is 64 and its
number of non-zeros is 167. On the other hand, the dimension
of the Schur system for the augmented Lagrangian approach
(II.11) is 43 and it has 146 non-zero entries. We first tested the
algorithms on a standard workstation equipped with a 2.8 GHz
Dual-Core AMD Opteron(tm) 8220 SE processor to analyze
how sensitive the algorithm was to its algorithmic parameters.
The workstation has 16 GB of memory available.

In Table II, we present the number of iterations required by
the solver with different parameter settings. The last row in
the table are the results for the Aug strategy. The rest of the
results are for the SCALS strategy with different combinations
of δck and δc. We highlight that, in these experiments, δck is left
fixed throughout the iteration history (this allow us to solve
the Schur system at each iteration). Keeping δck also allow us
to have a more systematic analysis of algorithmic behavior. In
Table II we also report the number of additional factorizations
due to primal regularization required for correcting the positive
definiteness of Sk in the SCAL strategies or for correcting the
inertia of the KKT matrix in the Aug strategies. From Table
II we can see that the proposed SCAL algorithm can solve
the test problem for a wide range of values of δc and δck. All
solutions achieve the same optimal objective value. The ability
to handle a wide range of values of δck is desirable, as this
provides flexibility to improve the conditioning of matrix Sk.
Notably, the best parameter setting leads to 40 iterations, while
56 (out of 80) parameter settings achieve less iterations than
the standard filter-line search approach Aug. This is because
the SCAL strategies provide more flexibility to accept steps
than the standard filter line-search approach. We also found
that very small values of δck trigger primal regularization more
often. This is because, for such cases, the contribution of the

TABLE II
SUMMARY OF NUMBER OF ITERATIONS FOR SMALL HVAC INSTANCE.

1/δck δc Primal
0 10−6 10−2 10+0 10+2 10+6 Reg.

10−5 - - - - - 55 10
10−6 41 41 41 41 41 41 11
10−7 41 41 41 41 40 40 11
10−8 41 41 41 41 41 41 11
10−9 41 41 41 41 41 41 11
10−10 42 42 42 42 42 42 11
10−11 42 42 42 42 43 43 11
10−12 47 47 47 44 44 44 12
10−13 56 56 56 56 56 56 14
10−14 107 107 107 107 107 107 88

0 49 11

δckAkA
T
k term in Sk is dominated by that of the Hessian

matrix. As more primal regularization is added, the search
steps are of decreased quality, thus increasing the number of
iterations.

We also compare the computational performance of the
approaches on an embedded platform. The embedded system
we used is a BeagleBoneBlack, which is equipped with
a AM335x 1GHz ARM Cortex-A8 processor. Notably, the
embedded system has only 512MB of memory available. In
order to test scalability we also created a larger example
by duplicating the real smaller building system. The large
HVAC example contains 1000 variables and 999 inequality
constraints. We solve each case study 10 times and report
averages. Tables III and IV present solution times for the
small and large HVAC example, respectively. We use (nIter)
to denote the total number of iterations, (nFact) represents
the total number of factorizations, and (nSol) represents the
total number of backsolves. Fact(µs), BSol(µs) and Schur(µs)
represent the total time (in microseconds) required for factor-
ization, backsolve, and construction of the Schur complement
matrix (II.11), respectively. The last row AvgIter(µs) denotes
the average time spent on solving the linear system in a single
iteration (i.e., the sum of Fact, Sol, and Schur divided by nIter).

By comparing the times obtained for the workstation and
embedded platform, it becomes clear that the embedded sys-
tem is 10 times slower than the workstation. This illustrates
the limitations of low-cost embedded systems. We also see that
the average time per iteration of the standard Aug strategy is
drastically reduced by the SCALS counterpart. For the small
HVAC system, SCALS improves the performance of Aug by
a factor of 3 on a workstation and by a factor of 1.2 on
the embedded platform. Most notably, for the large HVAC
example, SCALS improves Aug by a factor of 1,437 on a
workstation and 1,145 on the embedded platform. This result
illustrates that the proposed approach can significantly increase
functionality on embedded platforms compared to off-the-self
approaches. We also highlight that the total solution times
for the large HVAC system are on the order of 0.68 seconds
for the SCALS strategy and on the order of 875 seconds for
the Aug strategy. We attribute these large speed-ups to the
ability of the SCALS strategy to operate on a linear system
of reduced dimension and to the ability to use linear algebra
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TABLE III
PERFORMANCE OF ALGORITHMIC STRATEGIES ON SMALL HVAC PROBLEM.

Desktop Embedded
Aug AugAL SCALS SCALD Aug AugAL SCALS SCALD

nIter 49 45 42 45 44 45 42 45
nFact 65 61 53 56 59 61 53 56
nSol 129 134 271 214 119 134 271 212

Fact (µs) 4625 4359 645 1054 39329 30968 15636 50501
Sol (µs) 1073 1102 644 1319 6134 5458 15740 41073

Schur (µs) - - 264 244 - - 4689 6146
AveIter (µs) 116 121 36 58 1033 809 858 2171

TABLE IV
PERFORMANCE OF ALGORITHMIC STRATEGIES ON LARGE HVAC PROBLEM.

Desktop Embedded
Aug AugAL SCALS SCALD Aug AugAL SCALS SCALD

nIter 39 35 35 35 39 35 35 35
nFact 69 65 48 48 69 65 48 48
nSol 133 138 222 166 133 138 222 172

Fact (µs) 84154812 70768120 25101 13385834 871159612 716593235 303852 1393419540
Sol (µs) 680684 681306 15361 3951190 4782804 4643203 229265 36876921

Schur (µs) - - 12496 41472 - - 153337 163153
AveIter (µs) 2175269 2041412 1513 496528 22460061 20606755 19612 40870274

strategies with reduced overheads. In particular, a Cholesky
factorization does not need to perform a symbolic factorization
and pivoting, as is done in the indefinite factorization routine
implemented in MA27.

We note that the number of iterations differs from the
number of factorizations and the number of backsolves. This
is because of the additional factorizations required for primal
regularization and because we perform iterative refinement to
achieve a more accurate solution of the linear system. We
also observe that approaches Aug and AugAL require more
factorizations due to the default setting of MA27. In particular,
MA27 reallocates memory if its original allocated memory
is not sufficient to accommodate fill-in. This also involves
additional factorizations. In particular, for the small example,
MA27 requires 5 additional factorizations while it requires 17
additional factorizations for the large example. This, again,
highlights that it is beneficial to use factorization strategies
with fixed pivoting such as Cholesky in memory-constrained
settings.

We also found that SCALS and SCALD require more
iterative refinement steps. This is because SCAL algorithms
operate on the reduced Schur system (II.10) but refine the
residual on the entire primal-dual space. We also note that,
as discussed in [30], [5], the reduced system will tend to
have a larger condition number than the augmented system.
Interestingly, even if SCALS and SCALD require significantly
more backsolves, we still can observe significant speed up in
the factorization step. This is particularly evident in the large
HVAC instance.

V. CONCLUSIONS AND FUTURE WORK

We presented a filter line-search algorithm for nonconvex
continuous optimization that uses an augmented Lagrangian
function and a constraint violation metric to accept and reject
steps. The approach is motivated by real-time optimization

applications that need to be executed on low-cost embedded
computing platforms with constrained memory and processor
speeds. The proposed method enables the use of primal-dual
regularization of the augmented system that in turn provides
flexibility to use linear algebra strategies with lower computing
overheads. We prove that the proposed algorithm is globally
convergent and can handle negative curvature and nearly rank-
deficient Jacobians. We demonstrate the developments using
a set-point optimization application for a building HVAC
system. Our numerical studies demonstrate that the proposed
approach enables reductions in solution times of up to three
orders of magnitude over a standard filter line-search setting
on an embedded platform. As part of future work, we are
interested in developing strategies to accelerate computations
on embedded platforms by using single precision precon-
ditioners and by using field-programmable gate arrays. We
are also interested in studying the local asymptotic conver-
gence properties of the proposed algorithm and to explore
the possibility of adjusting the augmented Lagrangian penalty
parameter adaptively.
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