Noname manuscript No.
(will be inserted by the editor)

pyomo .dae: A Modeling and Automatic Discretization Framework
for Optimization with Differential and Algebraic Equations

Bethany Nicholson - John D. Siirola - Jean-Paul Watson - Victor
M. Zavala - Lorenz T. Biegler

Received: date / Accepted: date

Abstract We describe pyomo . dae, an open source Python-based modeling framework that enables high-level
abstract specification of optimization problems with differential and algebraic equations. The pyomo.dae
framework is integrated with the Pyomo open source algebraic modeling language, and is available at http:
/ /www.pyomo.org. One key feature of pyomo . dae is that it does not restrict users to standard, predefined
forms of differential equations, providing a high degree of modeling flexibility and the ability to express con-
straints that cannot be easily specified in other modeling frameworks. Other key features of pyomo . dae are the
ability to specify optimization problems with high-order differential equations and partial differential equa-
tions, defined on restricted domain types, and the ability to automatically transform high-level abstract models
into finite-dimensional algebraic problems that can be solved with off-the-shelf solvers. Moreover, pyomo . dae
users can leverage existing capabilities of Pyomo to embed differential equation models within stochastic and
integer programming models and mathematical programs with equilibrium constraint formulations. Collec-
tively, these features enable the exploration of new modeling concepts, discretization schemes, and the bench-
marking of state-of-the-art optimization solvers.

Keywords Dynamic optimization - Mathematical modeling - Algebraic modeling language - DAE constrained
optimization - PDE constrained optimization

Bethany Nicholson - Lorenz T. Biegler
Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh PA 15213

John D. Siirola - Jean-Paul Watson
Center for Computing Research, Sandia National Laboratories, Albuquerque NM 87185

Victor M. Zavala
Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706

http://www.pyomo.org
http://www.pyomo.org

2 Bethany Nicholson, John D. Siirola, Jean-Paul Watson, Victor M. Zavala, Lorenz T. Biegler

Tool Types Non-Canonical Forms Open Source Open Language Solution Methods
ACADO [17] ODE, DAE X C++ Shooting Methods, Collocation
APMonitor [15] ODE, DAE X Collocation
GPOPSII [25] ODE, DAE Collocation
gPROMS [26] ODE, DAE, PDAE X Shooting Methods, Collocation
Optimica and JModelica.org [1] ODE, DAE X Shooting, Collocation
SOCS [6] and SOS [5] ODE,DAE Fortran Finite Difference, Collocation
TACO [21] ODE, DAE X Shooting
Tomlab PROPT [27] ODE, DAE X Collocation
pyomo.dae ODE, DAE, PDAE X X Python Finite Difference, Collocation

Table 1 Capabilities of existing tools for specifying and solving optimization problems with differential equations.

1 Introduction and Motivation

Optimization problems constrained by differential and algebraic equations (DAEs) or partial differential and
algebraic equations (PDAEs) are ubiquitous in engineering and science. Application domains include aerospace
systems, chemical reactor systems, infrastructure (water, gas, electricity, and transportation) networks, eco-
nomics and finance, robotics, and environmental engineering. Differential constraints arising in these domains
are often expressed in specific canonical forms, but more complex and exotic (non-canonical) forms such as
multi-point boundary conditions and PDAEs spanning multiple domains are not uncommon. The latter forms
cannot be expressed easily in existing modeling packages or by variational methods. Moreover, the solution
of problems with differential constraints requires sophisticated transcription (discretization) schemes that may
require the combination of different techniques and associated experimentation. These schemes are often im-
plemented manually and are thus tedious, time-consuming, and error-prone. To avoid such complications, it
is desirable to separate model abstractions from discretization schemes and to automate such schemes so that
users can experiment with alternative approaches and assess performance in a more systematic manner.

There are many approaches available to users interested in incorporating differential equations into op-
timization models. One widely used alternative is to simply apply manual discretization, expressing the re-
sulting finite-dimensional representation in an algebraic modeling language. Algebraic modeling languages
typically allow a user to represent optimization problems using a concise and natural syntax, perform limited
model checking and automatic differentiation, and provide interfaces for communicating with optimization
solvers. Well-known algebraic modeling languages include GAMS [11] and AMPL [12]. A limitation of these
tools is that they define their own proprietary syntax for representing optimization problems and are not open
source. Consequently, they have limited extensibility.

In contrast to commercial alternatives, algebraic modeling tools that are embedded in high-level program-
ming languages such as Python, Matlab, and Julia provide more flexibility to incorporate new syntax, compo-
nents, and processing capabilities. Examples of such tools include FlopC++ [18], PuLP [24], Pyomo [14], and
more recently JuMP [22]. While these algebraic modeling languages allow the user to formulate problems in
a high-level programming language, they are currently restricted in the classes of optimization problems they
can represent. Specifically, only a small subset of these tools provide syntax extensibility and processing (dis-
cretization) capabilities for differential equations. An overview of such tools and their capabilities is provided
in Table 1. This table summarizes the types of differential equations each tool can express and manipulate,
indicates whether the tool is open source, and indicates whether the tool represents models using a high-level
programming language (as opposed to a proprietary syntax). The last column of the table lists the solution
methods each tool provides to the user. As the table indicates, the new package described in this paper —
pyomo . dae — allows for representation of a broad range of differential and algebraic equation components in
optimization models, is open source and based on a widely used high-level programming language (Python),
and provides a range of discretization capabilities for solution of specified models.

Most of the existing tools that can express and solve optimization models with differential equations re-
quire users to formulate models using a proprietary language. Notable exceptions are ACADO and SOCS/-
SOS, which can be respectively used directly from C++ and Fortran. ACADO is open source and provides both
shooting and direct collocation methods for solving specified problems. However, ACADO cannot represent

pyomo . dae: A Modeling and Automatic Discretization Framework for Optimization with Differential and Algebraic Equations 3

optimal control problems in non-canonical forms. While these tools provide tailored solution algorithms for
models with specific classes of differential equations, they are unable to represent and solve models which
deviate even slightly from those specific classes. APMonitor offers additional flexibility over ACADO in ex-
pressing differential equations in non-canonical forms and high-index DAE systems, and is freely accessible
via the web. However, APMonitor is not open source and uses a proprietary syntax.

Of the tools surveyed here, gPROMS is the only package that provides complete flexibility in the types of
differential equations that can be modeled, including support for PDAEs and non-canonical forms. However,
gPROMS is a commercial software. Tools such as Optimica, TACO, and Tomlab’s PROPT are extensions for the
existing programming languages and software packages Modelica, AMPL, and Matlab, respectively. None of
these tools include support for differential equations in non-canonical forms and the extensions are all based
on a proprietary syntax.

In contrast to the tools described above, pyomo.dae is a flexible and extensible tool for representing
systems of ODEs, DAEs, and PDAEs on certain domains and provides capabilities to automatically apply-
ing numerical discretization techniques for converting differential equations to algebraic equations. Using
pyomo . dae, a user may represent ordinary and partial differential equations of arbitrary order, of arbitrary
dimension, and in any form — including complex mixed partial derivatives. The pyomo . dae package is also ca-
pable of expressing and solving optimal control problems in non-canonical forms. We have based pyomo . dae
on a widely used open source algebraic modeling language, Pyomo, which in turn is written in the high-level
programming language Python.

The remainder of this paper is organized as follows. In Section 2, we provide a brief overview of Pyomo and
describe the new modeling constructs available in pyomo . dae. Then, in Section 3, we review the automatic
discretization schemes that are provided in pyomo.dae to transform dynamic models to algebraic approxi-
mations, and describe their use within Pyomo and Python. In Section 4, we detail how pyomo.dae can be
extended to support custom discretization schemes. We discuss the expression and solution of several illustra-
tive optimization problems with dynamics using pyomo . dae in Section 5. Finally, we conclude in Section 6
with a summary of pyomo . dae capabilities, our contributions to algebraic modeling languages for optimiza-
tion, and directions for future research.

2 Modeling Differential Equations Using pyomo . dae

In Section 2.1 we provide a brief overview of the Pyomo algebraic modeling language, surveying its core capa-
bilities and justifying our choice of Pyomo as the basis for our DAE and PDAE modeling and transformation
capabilities. In Section 2.2, we then describe our new modeling components, which integrate directly with and
extend the Pyomo library.

2.1 Pyomo: Background

Pyomo is an open source algebraic modeling language written in Python [14,13]. Since its introduction, Pyomo
has undergone major restructuring and extension, such that Pyomo is now stable, flexible, and widely used.
An overview of the current features of Pyomo is shown in Figure 1. Pyomo supports a wide range of prob-
lem types including Linear Programming (LP), Mixed-Integer Programming (MIP), Nonlinear Programming
(NLP), and Mixed-Integer Nonlinear Programming (MINLP). Pyomo also provides interfaces to a variety of
optimization solvers and provides automatic differentiation (AD) for NLP problems via the open source AMPL
Solver Library (ASL).

One of Pyomo’s main advantages over other algebraic modeling languages is that it is written in a high-
level programming language, Python. Consequently, a user does not have to learn a specialized modeling
language in order to formulate and solve optimization problems; a basic understanding of Python is all that

4 Bethany Nicholson, John D. Siirola, Jean-Paul Watson, Victor M. Zavala, Lorenz T. Biegler

4 N\
N w CPLEX
)~ PYOMO Solver Interfaces Gurobi
Xpress
Meta-Solvers | P
« Generalized Benders Core Optimization GLPK
* Progressive Hedging — Obiects CBC
* Linear bilevel)
» Linear MPEC | BARON
Core Modeling OpenOpt
Objects NEOS
Modeling Extensions | AMPL Solver Library
« Disjunctive programming oot
+ Stochastic programming Model pop
« Bilevel programming Transformations KNITRO
« Differential equations Bonmin
» Equilibrium constraints Couenne
\ / DAKOTA

Fig. 1 Summary of Pyomo features

is required. Models are represented using Python objects and can be formulated and manipulated in sophisti-
cated ways using simple scripts. Furthermore, Pyomo users have access to a large collection of other Python
packages which include tools for plotting, numerical and statistical analysis, and input/output. These capabil-
ities enable the development of novel algorithms, complicated model formulations, and general model trans-
formations. All of these features make Pyomo a promising platform for implementing extensions for problem
classes such as dynamic optimization.

2.2 Modeling Components for Expressing DAEs and PDAEs

One of the main constructs in any algebraic modeling language is the notion of an indexing set. Indexing
sets allow users to compactly specify related collections of parameters, variables, and constraints. In standard
algebraic modeling languages, indexing sets are assumed to be discrete. This assumption makes it challenging
to represent optimization problems with continuous domains and dynamics without first converting the model
to a discretized approximation, causing loss of information and transparency with respect to the precise nature
of the model. To address these shortcomings, the pyomo . dae library allows direct specification of continuous
domains and arbitrary derivatives, through the introduction of two new Pyomo modeling components. We
now describe these components and provide a brief overview of how they can be used to express a diverse
range of algebraic optimization models with differential equations. More details about these components can
be found in the online documentation available at http://www.pyomo.org.

2.2.1 The Cont inuousSet Component

Analogous to the discrete set construct available in most algebraic modeling languages, we now introduce
the notion of a continuous set. The Cont inuousSet construct allows users to represent continuous bounded
domains in an algebraic optimization model. Such domains can be interpreted as “spatial” or “time” domains,
but such interpretations are not strictly necessary. Rather, a continuous domain can represent any domain of a
function, e.g., a parameter domain.

The ContinuousSet component is similar in structure to that of Pyomo’s Set component and can be
used to index variables and constraints. Variables and constraints can be defined over an arbitrary number of
continuous domains. For instance, the expression

wll,z,t): L€ L:={0,1,..,L}, t €T :=1[0,T], z € X := [0, X] (2.1)

http://www.pyomo.org

10

11

pyomo . dae: A Modeling and Automatic Discretization Framework for Optimization with Differential and Algebraic Equations 5

defines a variable w with indices ¢ spanning the discrete set £, such that each w(¥,-,-) is defined over the
continuous rectangular domain 7 x X = [0,T] x [0, L]. By default, a ContinuousSet will be treated as a
closed set. The code to declare variable (2.1) using pyomo . dae is shown below (assuming L, T, and X are
previously defined constants).

Listing 1 Declaring a variable over discrete and continuous domains

m = ConcreteModel ()

m.]l = RangeSet(0, L)

m.x = ContinuousSet(bounds=(0, X))
m.t = ContinuousSet(bounds=(0, T))
m.w = Var(m.l, m.x, m.t)

A ContinuousSet must be initialized with two numeric values that specify the lower and upper bounds
of the continuous domain being represented. A user may also specify additional points in the domain that may
be communicated to a transformation method and/or solver. Such data can be used, for instance, to ensure that
a discretization mesh includes a subset of points, which in turn may be required to specify path constraints or
ensure consistency with experimental data. The following code fragment illustrates this capability:

Listing 2 Declaring continuous domains using Cont inuousSet components

declare by providing bounds

model.t = ContinuousSet(bounds=(0, 5))

declare specific points in domain

model.x = ContinuousSet(initialize=[0, 1, 2.5, 3.3, 5])

A user may also declare a ContinuousSet as part of a purely abstract Pyomo model, mirroring AMPL’s
paradigm of explicitly separating model from data. Generally, most valid methods to declare and initialize a
Pyomo Set can be used to declare and initialize a Cont inuousSet.

When an algebraic optimization model with DAEs and /or PDAESs is manually discretized, the indexing set
for a continuous variable typically takes the form of an arbitrary set of integers and the user is responsible for
converting each index to the desired temporal or spatial quantity. This conversion process is one of the most
common places where modeling errors occur, particularly when a more complex discretization scheme is used,
e.g., collocation on finite elements. The conversion can be particularly challenging in the case of unequally
spaced finite elements. Beyond discretization for a solver, accuracy of this conversion is crucial in visualization
and analysis of results. One of the main design strengths of the Cont inuousSet component in pyomo . dae
is that this manual conversion step has been eliminated and domain scaling is done directly within the set. In
other words, the discrete points in a ContinuousSet directly capture actual floating point values from the
bounded continuous domain being represented.

The ContinuousSet component can also be used to store information from a transformation and/or
solver. For instance, if the set is discretized using a collocation method over finite elements, one can obtain
a list of the discretization points used so that the user can interrogate and manipulate the ContinuousSet
component and implement customized initializations or constraints. Examples of these capabilities are shown
below:

m = ConcreteModel ()
m.t = ContinuousSet(bounds=(0, 10))
Var(m. t)

5
<
I

Discretize model using Radau Collocation over finite elements
discretizer = TransformationFactory(’dae.collocation”)
discretizer.apply-to(m, wrt=m.t, nfe=100, ncp=3)

Obtain a Python dictionary containing details about the discretization
scheme that has been applied to the Continuous Set
disc.info = m.t.get_discretization_info

12

13

14

15

16

17

18

19

20

21

22

1

12

14

15

16

17

18

19

20

6 Bethany Nicholson, John D. Siirola, Jean-Paul Watson, Victor M. Zavala, Lorenz T. Biegler

Apply constraint at finite element boundary points only
def _con(m, i):

return m.v[i] >= 0
m.con = Constraint(m.t. get_finite_elements (), rule=_con)

Obtain the upper and lower finite element boundaries for
internal collocation points
for i in m.t:

upper
lower = m.t.get_lower_element_boundary (i)

m. t.get_upper_element_boundary (i)

The ContinousSet component provides a user with a highly flexible mechanism to impose constraints
and objectives in non-standard forms. In particular, we do not impose restrictions on the number of indepen-
dent dimensions of a variable or constraint, nor do we constrain the order of appearance of continuous and
regular sets in an indexed variable or constraint. For example, we enable specifications of the following form:

wll,z,y,z,t): LEL, xe€X, yeY, z€Z, teT. (2.2)

Analogous to the definition of a subset of a discrete set £ C L is the definition of a subset of a continuous set
T C T.Here, the subset T can be either discrete (with elements in [0, 7]) or continuous. Constraints involving
variables defined over a continuous set may be defined over a subset of a continuous set. For instance, if we
define X = [0,2] and 7 = [1, 10], the following constraints are conceptually valid:

hw(l,x,t)) =0, x € [0,1], t € [5,10]
hw(l,x,t)) =0, € {0,0.1,0.5,1}, t € T
h(w(l,z,t)) =0, z € {0,0.1,0.5,1}, t € {2,3,4}.
Currently, pyomo . dae does not allow a Cont inuousSet component to be defined as a subset of another
ContinuousSet. This extension is on-going work. Instead, constraints over continuous subsets can currently

be implemented using constraint skipping. Examples of declaring constraints over continuous and discrete
subsets are shown below:

Listing 3 Declaring constraints over a subset of a continuous set

m. xsubset = Set(initialize=[0, 0.1, 0.5, 1])
m. tsubset = Set(initialize=[2, 3, 4])

m.x = ContinuousSet(bounds=(0, 2), initialize=m.xsubset)
ContinuousSet(bounds=(1, 10), initialize=m.tsubset)

m. t

def _conl(m, 1, x, t):
if x <=1 and t >= 5:

return m.h[1, x, t] == 0
else:
return Constraint.Skip
m.conl = Constraint(m.1, m.x, m.t, rule=_conl)

def _con2(m, 1, x, t):
return m.h[1, x, t] ==
m.con2 = Constraint(m.l, m.xsubset, m.t, rule=_con2)

def _con3(m, 1, x, t):
return m.h[l, x, t] == 0
m.con3 = Constraint(m.1l, m.xsubset, m. tsubset, rule=_con3)

The ability to impose constraints at discrete points allows the user to specify path and point constraints. This
in turn allows the imposition of multi-point boundary conditions including periodicity and delay constraints.

10

11

13

14

16

17

19

pyomo . dae: A Modeling and Automatic Discretization Framework for Optimization with Differential and Algebraic Equations 7

Recirculation (cyclic) constraints are typical in chemical reactors, periodicity constraints are typical in model
predictive control, and delay constraints are typical in signal and transportation networks. Specifications of
these types of constraints take the following form:

h(wi(z,0)) = f(wy(z,T)), z€X
hwy(z,T)) = flwr(z, T —90)), xz€X
h(w1(X,0)) = f(w1(X/2,7/2))

where h(-) and f(-) are arbitrary functions. The constraints expressed above can be implemented as follows
assuming X and T are previously defined constants:

Listing 4 Declaring multi-point boundary conditions

m. delta = Param(initialize =5)

m.x = ContinuousSet(bounds=(0, X),initialize=[X/2])

m. t ContinuousSet(bounds=(0, T),initialize=[T/2, T-m.delta])

m.h = Expression(m.x, m.t, rule=_arbitrary_h_expression)
m.f = Expression(m.x, m.t, rule=_arbitrary_f_expression)

def _conl(m, x):
return m.h[x, 0] == m.f[x, T]
m.conl = Constraint(m.x, rule=_conl)

def _con2(m, xidx):
return m.h[x, T] == m.f[x, T-delta]
m.con2 = Constraint(m.x, rule=_con2)

def _con3(m):
return m.h[X, 0] == m.f[X/2, T/2]
m.con3 = Constraint(rule=_con3)

We also allow the user to impose constraints between variables and across domains. For instance, the con-
straint

h(wlt,z,T)) = f(w(l+1,2,0)), ze€X
can be implemented as:

Listing 5 Declaring constraints across domains

m. 1

RangeSet (1, 10)
m. X ContinuousSet (bounds=(0, X))
m.t = ContinuousSet(bounds=(0, T))

def _con(m, 1, x):
if 1 == 10:
return Constraint.Skip
else:
return m.h[1, x, T] ==m.f[1+1, x, 0]

m.con = Constraint(m.1, m.x, rule=_con)

This feature enables the user to couple physical elements described by different sets of differential equa-
tions. For instance, multiple domains arise in the modeling and control of lithium-ion batteries, fuel cells,
buildings, and gas networks. Coupling across domains is also common in multi-stage optimal control where
the horizon is lifted into stages.

The above example illustrates that pyomo.dae provides an intuitive, straightforward syntax for formu-
lating and linking dynamic algebraic optimization models over several domains. However, we note that we

8 Bethany Nicholson, John D. Siirola, Jean-Paul Watson, Victor M. Zavala, Lorenz T. Biegler

do not make any claims concerning our ability to solve arbitrary dynamic models over continuous domains.
Rather, our tool simply allows the user to formulate their problem in a direct, high-level manner.

2.2.2 The DerivativeVar Component

The DerivativeVar component isused to declare a derivative of a standard Pyomo Var. A variable may only
be differentiated with respect to a Cont inuousSet. Furthermore, the Cont inuousSet must be included as
an explicit indexing set of the Var. The indexing sets of a DerivativeVar are obtained directly from the var
it is differentiating. We also allow for specification of derivatives of arbitrary order. In the case of the variable
w(l, z,t) defined in (2.1), the derivatives

0°w(l, x,t)
o (2.3a)

APw(l, x,t)
B (2.3b)

0%0Pw(l, z,t)
ST (2.3¢)

can be imposed for o, 8 € {1,2,...}. The following code fragment illustrates the declaration of first-order,
second-order, and mixed-order derivatives. The variable being differentiated is supplied as the only positional
argument to the DerivativeVar constructor and the type of derivative is specified using the “wrt” keyword
argument (the more verbose “withrespectto” can also be used).

Listing 6 Declaring derivatives

m.dwdt = DerivativeVar (m.w, wrt=m.t)
m.dwdx2 = DerivativeVar (m.w, wrt=(m.x, m.x))

m.dwdxt = DerivativeVar (m.w, wrt=(m.x, m.t))

We assume that a variable defined over a continuous set is sufficiently smooth, such that any defined
derivatives exist. The user is responsible for ensuring that these requirements are fulfilled. As is the case with
the ContinuousSet component, the specification syntax is agnostic to the specifics of any transformation
and/or solution method that may be employed.

Derivatives can be referenced in the body of any constraint. This is an important feature, as we do not
impose any predefined structure on differential models. This enables the expression of DAEs with complex

mass matrices or boundary conditions. For instance, consider the following constraints:

%’;’”:ﬂw(z,x,t»,zeﬁ, reEX teT
OZWg(w(f,m,t)),ﬁeﬁ, reX teT.
X

The code implementing such constraints has the form:

Listing 7 Declaring constraints with derivatives

m.f = Expression(m.l, m.x, m.t, rule=_arbitrary_f_expression)
m.g = Expression(m.l, m.x, m.t, rule=_arbitrary_g_expression)

def _conl(m, 1, x, t):
return m.dwdx[l, x, t] ==m.f[l, x, t]

m.conl = Constraint(m.1, m.x, m.t, rule=_conl)

def _con2(m, 1, x, t):
return 0 == m.dwdx[l, x, t] * m.g[l, x, t]
m.con2 = Constraint(m.1l, m.x, m.t, rule=_con2)

The code fragment below provides a more explicit and complete example of how to specify DerivativeVar
components:

10

11

13

14

16

17

19

20

21

22

pyomo . dae: A Modeling and Automatic Discretization Framework for Optimization with Differential and Algebraic Equations 9

Listing 8 Declaring derivatives using DerivativeVar components

model = ConcreteModel ()

model.s = Set(initialize=["a’, 'b’])
model.t = ContinuousSet(bounds=(0, 5))
model.l = ContinuousSet(bounds=(—10, 10))
model.x = Var(model. t)

model.y = Var(model.s, model.t)

model.z = Var(model.t, model.1)

Declare first derivative of model.x with respect to model.t
model.dxdt = DerivativeVar (model.x, withrespectto=model.t)

Declare second derivative of model.y with respect to model.t
Note that this DerivativeVar will be indexed by both model.s and model. t
model.dydt2 = DerivativeVar(model.y, wrt=(model.t, model.t))

Declare partial derivative of model.z with respect to model.]
Note that this DerivativeVar will be indexed by both model.t and model.l
model.dzdl = DerivativeVar(model.z, wrt=model.l, initialize=0)

Declare mixed second order partial derivative of model.z with respect
to model.t and model.l and set bounds
model.dz2 = DerivativeVar(model.z, wrt=(model.t, model.l), bounds=(-10,10))

The design of the DerivativeVar component diverges from that of core Pyomo components in its use of
positional arguments. Typically, positional arguments in Pyomo are used to specify indexing sets of a particular
component. However, for DerivativeVar components, a variable is supplied as a positional argument. This
design choice was intended to codify the notion of a derivative being an operation on a variable rather than
a distinct object. We note that the “initialize” keyword argument shown above will initialize the value of a
derivative, rather than specifying an initial condition or boundary constraint.

After the derivatives in a model have been declared using DerivativeVar components, differential equa-
tions are declared as standard Pyomo constraints and are not required to have any particular form. The fol-
lowing code fragment illustrates how one might declare an ordinary or partial differential equation using one
or more of the derivatives defined in the previous code fragment:

Listing 9 Declaring differential equations

An ordinary differential equation
def _ode_rule(m, t):
if t ==m.t.first():
return Constraint.Skip
return m.dxdt[t] == m.x[t]*xx2
model.ode = Constraint(model.t, rule=_ode_rule)

A partial differential equation
def _pde_rule(m, t, 1):
if t ==m.t.first() or I ==m.l.first() or 1 ==m.1.last():
return Constraint.Skip
return m.dzdI[t, 1] == m.dz2[t, 1]
model.pde = Constraint(model.t, model.l, rule=_pde_rule)

A modeler may not want to define a differential equation at one or both boundaries of a continuous domain.
This choice can be specified explicitly in the Const raint declaration using the “Constraint.Skip” return value,
as shown above. By default, a constraint declared over a ContinuousSet will be applied at every discretiza-
tion point contained in the set. One can also think of this as the distinction between applying a constraint over
an open or closed set. Finally, for the case of boundary conditions of PDAEs, we note that the user is respon-

10 Bethany Nicholson, John D. Siirola, Jean-Paul Watson, Victor M. Zavala, Lorenz T. Biegler

sible for providing consistent expressions and pyomo . dae provides syntax to communicate such constraints
(e.g., derivative objects and access to specific points).

3 Discretization Transformations

Before a Pyomo model with Cont inuousSet and DerivativeVar components can be processed by a finite
dimensional solver it must first be discretized. This transformation process converts a dynamic optimization
model to a purely algebraic optimization model using a simultaneous discretization approach. Specifically,
the continuous domains in the dynamic optimization model are discretized and any derivatives are approx-
imated using algebraic equations defined at the discretization points. Two families of discretization schemes
are currently implemented in pyomo . dae: finite differences and collocation.

By separating models from discretization schemes we enable users to easily experiment with alternative
discretization schemes, to identify the one that works best with their particular problem. This separation also
provides users the freedom to combine discretization schemes in non-standard ways, e.g., using collocation to
discretize a spatial domain and finite difference method to discretize in time or vice versa.

One of the key differences between pyomo . dae and similar tools is that the discretized model is returned to
the user after each transformation is applied. This design feature allows the user to interrogate the discretized
model and examine the discretization equations that were added to the model. Additionally, users can further
modify the model following discretization.

Applying one of the discretization schemes available in pyomo . dae to a differential equation is analogous
to approximating the solution of that differential equation using a numerical method. Numerical methods
vary in terms of accuracy and the type of problems to which they can be applied. While we provide a brief
overview of the methods implemented in pyomo . dae below, a detailed description of these methods is outside
the present scope. For more information on these techniques and details of their applicability, we defer to [3,4,
9,10].

3.1 Finite Difference Transformation

Finite difference methods are the simplest discretization schemes to apply manually, and approximate the
derivative at a particular point using a difference equation. The dae.finite_difference transformation
in pyomo . dae includes implementations of several finite difference methods. The most commonly-used finite
difference method is the backward difference method, also referred to as implicit or backward Euler. In our im-
plementation, a discretization is applied to a particular continuous domain and propagated to each derivative
and constraint over that domain. For instance, consider the following derivative and associated constraint:

(d:zc(t)

il ,f(:r(t),u(t))) =0, te]l0,T)]. (3.4)

After applying the backward difference method to domain ¢, the resulting derivative and constraint pair is

dx Tht1 — Tk
e ey (3.5)
at |, h
dz
g <dt 7f(xk+1>uk+1)) =0, k= 0, 7N -1 (36)
trt+1

where z, = z(t;), tx = kh, and h is the step size between discretization points or the size of each finite el-
ement. We note that the discretization scheme is applied to all constraints and variables of the model in a
given continuous domain. Higher order derivative terms are approximated using recursive schemes. When a
dae.finite_difference transformation is applied to a Pyomo model, equations such as (3.5) are automat-
ically generated and added to the resulting discretized Pyomo model as equality constraints. The following

1

12

14

15

17

18

pyomo . dae: A Modeling and Automatic Discretization Framework for Optimization with Differential and Algebraic Equations 11

Python script applies the backward difference method to a Pyomo model. The code also illustrates how to add
a constraint to a model after discretization.

Listing 10 Applying a finite difference discretization to a Pyomo model

from pyomo.environ import *
from pyomo.dae import x

Import concrete Pyomo model
from pyomoExample import model

Discretize model using Backward Difference method
discretizer = TransformationFactory (’dae.finite_difference”)
discretizer.apply_to(model, nfe=20, wrt=model.time, scheme="BACKWARD")

Add a constraint to the discretized model
def _sum_limit(m):

return sum(m.x1[i] for i in m.time) <= 50
model. con_sum_limit = Constraint(rule=_sum_limit)

Solve discretized model
solver = SolverFactory(’ipopt”)
results = solver.solve(model)

There are several options available to a dae . finite_difference transformation, which can be specified
as keyword arguments to the ‘apply’ function of the transformation object. These keywords are as follows:

‘nfe’: Specifies the desired number of finite element points to be included in the discretization. The default
value is 10.

‘wrt’: Specifies the ContinuousSet for which the transformation should be applied. If this keyword argu-
ment is not specified then the same scheme will be applied to all continuous sets in the model.

‘scheme”: Specifies which finite difference method to apply. Alternatives are ‘BACKWARD’, ‘CENTRAL’, or ‘FORWARD’.

The default scheme is the backward difference method.

If the existing number of finite element points in a Cont inuoussSet is less than the desired number, new
discretization points will be automatically added to the set. If a user specifies a desired number of finite element
points which is less than the number of points already included in the ContinuousSet then the transforma-
tion will ignore the desired number and proceed with the larger set of points. Discretization points will never
be removed from a ContinuousSet during the discretization transformation.

3.2 Collocation Transformation

Orthogonal collocation (or simply “collocation”) over finite elements is another popular numerical method for
discretization of differential equations. Collocation works by first breaking a continuous domain into N — 1
finite elements. Then over each finite element ¢ the profile of the differential variable x(t) is approximated using
a polynomial of order K + 1. This polynomial is defined using K collocation points, which act as additional
discretization points within each finite element . Continuity is enforced at the finite element boundaries for
the differential variables x. For example, the discretization equations for a constraint of the form (3.4) are given

12 Bethany Nicholson, John D. Siirola, Jean-Paul Watson, Victor M. Zavala, Lorenz T. Biegler

by
dz 1SN dl(m)
i\Tk ,
— = i , k=1,....K,i1=1,...,N—1 7
dt t; hi;)fg dr ? (3.7a)
dx .
0:g<dt ,f(mik,uik)>, k=1,....K,i=1,...,N—1 (3.7b)
t,‘,J
K
Ti+1,0 = Zéj(l)xu, 1= 17 I ,N -1 (37C)
j=0

where t;; = t;—1 + 7jh;, z(t;;) = z;;. Further, we note that the solution z(t) is interpolated as follows:

K

x(t) = Z@'(T)Iij, teltioi,ts], 7€10,1] (3.8a)
/=0
E (r =)

4= 11 % (3.8b)
k=0,4] TJ Tk

The advantage of using a collocation method over a finite difference method is that collocation results in sig-
nificantly more accurate algebraic approximations. The drawback of collocation is that it is much harder to
implement and debug manually, relative to finite difference methods. Furthermore, implementing the colloca-
tion discretization equations on higher-order derivatives, partial derivatives, or differential equations that are
not in a standard form is non-trivial.

There are many variations of collocation methods, differing primarily in the functional representation of
the state profile over each finite element and how the collocation points are defined. The current version of
pyomo.dae includes two types of collocation methods, both using Lagrange polynomials to represent the
state profiles but differing in the choice of collocation points 7. One variant uses shifted Gauss-Radau roots
and the other one uses shifted Gauss-Legendre roots. The term “shifted” refers to the fact that the collocation
points 7 are defined in the domain 7 € [0,1] rather than 7 € [—1,1]. For more information on orthogonal
collocation we refer the reader to Chapter 10 of [7].

The following Python script applies the collocation method with Lagrange polynomials and Gauss-Radau
roots to a Pyomo model, and additionally illustrates how to add an objective function to the resulting dis-
cretized model.

Listing 11 Applying a collocation discretization to a Pyomo model

from pyomo.environ import *
from pyomo.dae import =

Import concrete Pyomo model
from pyomoExample2 import model

Discretize model using Radau Collocation
discretizer = TransformationFactory(’dae.collocation”)
discretizer.apply-to(model, nfe=20, ncp=6, scheme="LAGRANGE-RADAU")

Add objective function after model has been discretized
def obj_rule(m):

return sum((m.x[i]-m. x_ref)*x2 for i in m.time)
model. obj = Objective (rule=obj_rule)

Solve discretized model
solver = SolverFactory(’ipopt”)
results = solver.solve(model)

pyomo . dae: A Modeling and Automatic Discretization Framework for Optimization with Differential and Algebraic Equations 13

The collocation discretization transformation in pyomo . dae allows the user to specify the number of finite
elements, ‘nfe’, independently of the number of collocation points per finite element, ‘ncp’. The discretiza-
tion options available to a dae.collocation transformation are the same as those described above for the
dae.finite_difference transformation, with the following additions:

“scheme’”: Specifies the desired collocation scheme, either "LAGRANGE-RADAU’ or ‘LAGRANGE-LEGENDRE'.
The default is ‘LAGRANGE-RADAU".
‘ncp’: Specifies the number of collocation points within each finite element. The default value is 3.

We note that any points that exist in a Cont inuousSet before a transformation is applied will be used
as finite element boundaries and not as collocation points. The locations of the collocation points cannot be
specified by the user. Rather, they must be generated by the transformation.

3.3 Applying Multiple Transformations

Discretization transformations can be applied independently to each ContinuocusSet in a Pyomo model,
providing great flexibility to users. For example, the same scheme can be applied with different resolutions in
different domains, as follows:

Listing 12 Applying different discretization resolutions to different continuous domains

discretizer = TransformationFactory(’dae.finite_difference”)
discretize .apply-to(model, wrt=model.tl, nfe=10)
discretize .apply_to(model, wrt=model.t2, nfe=100)

This feature can be used, for instance, when discretizing different pipelines in a network that exhibit differ-
ent dynamic behavior or discretizing different stages in an optimal control model with different resolutions.

Different schemes can also be applied to different domains. For example, we can apply a forward difference
method to one ContinuousSet and the central finite difference method to another Cont inuousSet:

Listing 13 Applying different finite difference transformations to different continuous domains

discretizer = TransformationFactory(’dae.finite_difference”)
discretizer.apply-to(model, wrt=model. t1 ,scheme="FORWARD")
discretizer.apply_to(model, wrt=model. t2 ,scheme="CENIRAL")

Further, users may combine finite difference and collocation discretizations, e.g., as follows:

Listing 14 Combining finite difference and collocation schemes

discretizer_fe = TransformationFactory(’dae.finite_difference”)
discretizer_fe.apply_-to(model, wrt=model.tl, nfe=10)
discretizer_col = TransformationFactory(’dae.collocation”)
discretizer_col.apply_-to(model, wrt=model.t2, nfe=10, ncp=5)

To apply the same discretization to all Cont inuousSet components in a model, users simply specify a sin-
gle discretization transformation without the ‘wrt” keyword argument. This approach will apply the selected
scheme to all ContinuousSet components in the model that have not already been discretized.

4 Package Implementation and Extensibility

One of the main implementation goals for automatic discretization in pyomo.dae is extensibility, as there
are a plethora of discretization schemes documented in the literature and some specialized schemes might be
required in certain applications. As part of our implementation we have developed a general transformation
framework along with certain utility functions so that advanced users may easily implement their own custom
discretization schemes while reusing the syntax of the modeling language. The transformation framework
consists of the following steps:

14 Bethany Nicholson, John D. Siirola, Jean-Paul Watson, Victor M. Zavala, Lorenz T. Biegler

. Specify Discretization Options
. Discretize the Continuous Sets
. Update Model Components

. Add Discretization Equations
. Return Discretized Model

U = W N =

If a user would like to create a custom finite difference scheme then they only have to re-implement step (4)
in the framework. The discretization equations for a particular scheme have been isolated from of the rest of the
code for implementing the transformation. For example, the specific function for the forward finite difference
method is:

Listing 15 pyomo . dae implementation of the forward finite difference scheme

def _forward_transform(v,s):

vz

Applies the Forward Difference formula of order O(h) for first derivatives
def _fwd_-fun(i):

tmp = sorted(s)

idx tmp . index (i)

return 1/(tmp[idx+1]—tmp[idx])*(v(tmp[idx+1])—v (tmp[idx]))
return _fwd_fun

In this function, ‘v’ represents the continuous variable or function that the method is being applied to
while ‘s’ represents the set of discrete points in the continuous domain. In order to implement a custom finite
difference method, a user would have to duplicate the above function and just replace the equation next to the
first return statement with their method. After implementing a custom finite difference method using the above
function template, the only other change that must be made is to add the custom method to the ‘all_schemes’
dictionary in the Finite_Difference_Transformation class.

In the case of a custom collocation method, changes will be made in steps (2) and (4) of the transformation
framework. The code below shows the function specific to a collocation scheme with Lagrange interpolation
polynomials and Radau collocation points.

Listing 16 pyomo.dae implementation of collocation using Lagrange polynomials and Radau roots
g p g Lagrange polyn

def _lagrange_radau_transform(v,s):
ncp = s.get_discretization_info ()['ncp’]
adot = s.get_discretization_info ()["adot’]
def _fun(i):
tmp = sorted(s)
idx = tmp.index(i)
if idx == 0: # Don’t apply this equation at initial point
raise IndexError(”list index out of range”)
low = s.get_lower_element_boundary (i)
lowidx = tmp.index (low)
return sum(v(tmp[lowidx+j])*adot[j][idx—lowidx] \
*(1.0/ (tmp[lowidx+ncp]—tmp[lowidx])) for j in range(ncp+1))
return _fun

In addition to implementing the discretization equations, the user would have to ensure that the desired
collocation points are added to the ContinuousSet being discretized. The collocation transformation in
pyomo.dae calculates Radau or Legendre collocation points following chapter 10 in [7] if the user has the
Python package Numpy installed, otherwise it uses precomputed values (for up to 10"-order polynomials).

So far we have shown that pyomo . dae is extensible in terms of implementing custom discretization schemes
but it is also extensible in a more general sense. The modeling abstraction introduced here allows for general
implementations of any model transformation or operation typically applied to optimal control problems. For
instance, the control profiles can be constrained to follow predefined functions. To illustrate this, we extended

pyomo . dae: A Modeling and Automatic Discretization Framework for Optimization with Differential and Algebraic Equations 15

the dae.collocation transformation with a function that forces a control variable to have a certain profile;
for example, piecewise constant or piecewise linear. This is useful, for instance, in optimal control problems
where the control variable is often restricted to be constant over each finite element while the other state vari-
ables are not. This function can be implemented by reducing the number of free collocation points for a partic-
ular variable. The reduce_collocation_points () function is specified using the following keywords:

‘var’: The variable being restricted to fewer collocation points

‘contset’: The continuous set indexing the specified ‘var’ that was previously discretized.

‘ncp’: The new number of collocation points. Must be at least 1 and less than the number of collocation points
used to discretize the “contset’.

The function may only be applied to a model after a collocation discretization transformation has been
called to discretize the specified Cont inousSet. The function works by adding constraints to the discretized
model which force any extra, undesired collocation points to be interpolated from the others. These constraints
have the following form over each finite element:

K
j=1

where K is the original number of collocation points and K is the reduced number of points. A sample imple-
mentation is shown below.

Listing 17 Enforce path constraints on continuous variables

Discretize model using Radau Collocation
discretizer = TransformationFactory(’dae.collocation”)
discretizer.apply_to(model, wrt=model.time, nfe=20, ncp=6)

Control variable u made constant over each finite element
discretizer.reduce_collocation_points(var=model.u, contset=model. time ,ncp=1)

We also note that pyomo . dae does not distinguish between state and control variables. This means that
the reduce_collocation_points () function can be applied just as easily to impose a path constraint on a
continuous state variable.

The modular nature of Pyomo also allows for extensions in terms of solvers for dynamic optimization.
For example, a typical workflow with the current implementation of pyomo.dae is shown in Figure 2. A
straightforward extension would be to replace the "Write .nl File’ and "AMPL Solver Library” blocks with
another tool for automatic differentiation such as CasADi [2]. Or the workflow could be extended to output
the dynamic model, before applying a discretization scheme, and then solving the problem using a shooting
method. Finally, there are several parallel solvers available for dynamic optimization problems that rely on
the discretized model being separated at the finite element boundaries. A general implementation of this step
could easily be added to pyomo . dae.

5 Illustrative Applications

We now provide application examples that illustrate the use and flexibility of the modeling and transformation
capabilities provided by pyomo . dae. We begin with a detailed presentation of a simple heat transfer problem.
We then consider a small optimal control example, which is illustrative of common application for dynamic
optimization. Next, we examine a medium-scale parameter estimation problem for a dynamic disease trans-
mission model, which demonstrates how to integrate time-dependent data into a optimization model using
pyomo . dae. We conclude with a more complex example involving stochastic optimal control of natural gas
networks, which (1) includes all key modeling and transformation elements found in pyomo.dae and (2)
demonstrates the scalability of pyomo.dae. All examples use Pyomo version 4.3, Python version 2.7.6, and

16 Bethany Nicholson, John D. Siirola, Jean-Paul Watson, Victor M. Zavala, Lorenz T. Biegler

Data

Abstract

Model Construct =— == === = — —
— ! Discretization !

Concrete 1 Transformation |

Model

Model Object

Write .nl File

AMPL
Solver —4 Solve H Read Results
Library

Fig. 2 Pyomo workflow including discretization transformations

Ipopt version 3.10.1 on a desktop computer running Ubuntu 14.04. Code for these examples can be accessed at
https://software.sandia.gov/svn/pyomo/pyomo/trunk/examples/dae/.

5.1 Heat Transfer

Our first application example is taken from [23] and demonstrates the solution of a one-dimensional heat
equation. The equation, initial condition, and boundary conditions are as follows:

ou 0%u

20U _ 07U
o= (5.10a)
u(x,0) = sin(mx) (5.10b)
u(0,t) =0 (5.10¢)
et + %(u) =0 (5.10d)
z €10,1], t € 0,77 (5.10e)

This model has a number of interesting features, including first and second order partial derivatives, bound-
ary conditions involving both the variable and its partial derivative, and nonlinearity induced by a trigono-
metric function. In Listing 18, we present a Pyomo model that implements a manual discretization, without
pyomo . dae. We discretized this model in space using the backward difference method and in time using or-
thogonal collocation with Radau points. The first line in the model imports the required Pyomo packages.
Lines 4-6 declare the number of discretization points and lines 9-11 declare sets specifying indices for all the
discretization points. Lines 14-20 define the collocation matrix for 4th order Lagrange polynomials with Radau
roots. Computing this matrix by hand is often one of the more tedious parts of implementing a dynamic al-
gebraic optimization model. Lines 22-23 define the spatial and time scaling for each finite element and lines
25-30 define the model variables, including the differential variables.

Models that are discretized manually typically involve discretization points that lack any physical meaning,
i.e., time/distance scaling is handled separately from the definition of the discretization points. This approach
often leads to modeling errors and confusion especially when more complicated discretization schemes such
as collocation are considered. The model below tries to overcome this difficulty by introducing an additional
differential variable m. t that is used to calculate the properly scaled time points. Lines 32-54 define constraints
representing the heat transfer model (5.10a). The discretization schemes are then applied in lines 56-93. Finally,
a “dummy” objective function (because the example involves no optimization objective) is declared in line
95 and the model is solved using Ipopt in lines 97-98. The entire implementation requires fewer than 100
lines of code. While changing the number of finite element points is straightforward, changing the number of
collocation points or either of the discretization schemes would require significant changes.

Listing 18 Manually discretized heat transfer model in Pyomo

https://software.sandia.gov/svn/pyomo/pyomo/trunk/examples/dae/

10

11

12

14

15

17

18

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

pyomo . dae: A Modeling and Automatic Discretization Framework for Optimization with Differential and Algebraic Equations

from pyomo.environ import =

m = ConcreteModel ()

m.nfet = Param(initialize =20) # Number of finite elements in time

m.ncp = Param(initialize =4) # Number of collocation points per finite element
m.nfex = Param(initialize =25) # Number of finite elements in space

m.pi = Param(initialize=3.1416) # Pi

m. tfe = RangeSet(0, value(m.nfet)—1) # Set of finite element points in time

m. tcp = RangeSet(1, value(m.ncp)) # Set of collocation points in time

m.x = RangeSet(0, value(m.nfex)) # Set of finite element points in space

Collocation Matrix

radau_adot={(1,1): —9.0000000000000,(1,2): —4.1393876913398,(1,3):1.7393876913398 ,\
(1,4): —2.9999999999999,(2,1):10.0488093998274,(2,2):3.2247448713915,\
(2,3): —3.5678400846904,(2,4):5.5319726474218,(3,1): —1.3821427331607,\
(3,2):1.1678400846904,(3,3):0.7752551286084,(3 ,4): —7.5319726474218,\
(4,1):0.3333333333333,(4,2): —0.2531972647421,(4,3):1.0531972647421,\
(4,4):5.0000000000000}

m.adot = Param(m.tcp, m.tcp, initialize=radau.adot)

3
=
It

Param(initialize =2.0/m.nfet) # Length of time finite element
m.hx = Param(initialize=1.0/m.nfex) # Length of spatial finite element

u = Var(m.x, m.tfe, m.tcp, initialize=0.2)

2

5
1}

Var (m. tfe , m. tcp)

m.dudx = Var(m.x, m.tfe, m.tcp)
m.dudx2 = Var(m.x, m.tfe, m.tcp)
m.dudt = Var(m.x, m.tfe , m.tcp)

def _pde(m, i, j, k):
if i == 0 or i == value(m.nfex) or k ==
return Constraint.Skip
return m. pi**2sm.dudt[i,j , k] == m.dudx2[i,j k]
m.pde = Constraint(m.x, m.tfe , m.tcp,rule=_pde)

def _initcon(m,i):
if i == 0 or i == value(m.nfex):
return Constraint.Skip
return m.u[i,0,1] == sin(m.pixi#m.hx)
m. initcon = Constraint(m.x, rule=_initcon)

def _lowerbound(m, j, k):
return m.uf[0,j ,k] == 0
m.lowerbound = Constraint(m. tfe , m.tcp, rule=_lowerbound)

def _upperbound(m, j, k):
return m. pixexp(—m. t[j ,k])+m.dudx[value (m.nfex),j k] ==
m.upperbound = Constraint(m. tfe , m.tcp, rule=_upperbound)

def _init_t(m):
return m.t[0,1] == 0
m. _init_-t = Constraint(rule=_init_t)

Apply finite difference discretization equations
def _dudx_backwardDifference(m, i, j, k):
if i == 0:
return Constraint.Skip
return (m.u[i,j, k]-m.u[i-1,j,k])/m.hx == m.dudx[i,j, k]

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

5

6

18 Bethany Nicholson, John D. Siirola, Jean-Paul Watson, Victor M. Zavala, Lorenz T. Biegler

m. dudx_backwardDifference = Constraint(m.x, m. tfe , m.tcp, rule=_dudx_backwardDifference)

def _dudx2_backwardDifference(m, i, j, k):
if i ==0 or i ==
return Constraint.Skip
return (m.ul[i-2,j,k]-2sm.u[i—1,j, k]+m.u[i,j k])/m.hx**2 == m.dudx2[i,]j, k]
m. dudx2_backwardDifference = Constraint(m.x, m.tfe , m.tcp, rule=_dudx2_backwardDifference)

Apply collocation discretization equations
def _dudt_collocation(m, i, j, k):
if k ==
return Constraint.Skip
return sum(m.u[i,j,s]*m.adot[s, k] for s in m.tcp) == m. htsm.dudt[i,j, k]
m. dudt_collocation = Constraint(m.x, m.tfe, m.tcp, rule=_dudt_collocation)

def _dt_collocation(m, j, k):
if k ==
return Constraint.Skip
return sum(m. t[j,s]+m.adot[s, k] for s in m.tcp) == m.ht
m. dt_collocation = Constraint(m. tfe , m.tcp, rule=_dt_collocation)

Apply collocation continuity equations
def _u_continuity(m, i, j):
if j == value(m.nfet)—1:
return Constraint.Skip
return m.uf[i,j+1,1] == m.u[i,j, 4]
m. u_continuity = Constraint(m.x, m.tfe , rule=_u_continuity)

def _t_continuity (m, j):
if j == value(m.nfet)—1:
return Constraint.Skip
return m. t[j+1,1] == m.t[j, 4]
m. t_continuity = Constraint(m.tfe, rule=_t_continuity)

m. obj = Objective (expr=1)

solver = SolverFactory(’ipopt”)
results = solver.solve (m, tee=True)

We now contrast the Pyomo model with manual discretization to one that is discretized using pyomo . dae
as shown in Listing 19 below. The model requires one additional package import in order to access the model-
ing components and transformations available in pyomo . dae. Lines 4-8 define the model sets and variables.
Note that temporal and spatial scaling is handled explicitly via the defined ContinuousSet components. Specif-
ically, after applying a discretization scheme, the components ‘m.t" and ‘m.x’ will contain actual points in time
and space, respectively. This approach eliminates the need for an additional differential variable to represent
time, as was used in the manually discretized model. Lines 10-13 define the derivatives that appear in the
model, lines 15-34 define the equations associated with the heat transfer model, and line 36 defines the objec-
tive function. Lines 38-42 apply discretization schemes defined in pyomo. dae to the model. Line 41 applies
the backward difference method to the spatial ContinuousSet ‘'m.x” and line 42 applies Radau collocation to
the temporal ContinuousSet ‘m.t’.

Listing 19 Automatically discretized heat transfer model in Pyomo using pyomo . dae

from pyomo.environ import x
from pyomo.dae import x

m = ConcreteModel ()
m.pi = Param(initialize =3.1416)
m.t = ContinuousSet(bounds=(0, 2))

10

11

12

13

14

15

17

18

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

pyomo . dae: A Modeling and Automatic Discretization Framework for Optimization with Differential and Algebraic Equations 19

m. X

ContinuousSet (bounds=(0, 1))

m.u = Var(m.x,m. t)

Declare derivatives in the model

m.dudx = DerivativeVar (m.u, wrt=m.x)
m.dudx2 = DerivativeVar (m.u, wrt=(m.x, m.x))
m.dudt = DerivativeVar (m.u, wrt=m.t)

Declare PDE
def _pde(m, i, j):
if i ==0o0ri==1o0rj==
return Constraint.Skip
return m. pi**2sm.dudt[i,j] == m.dudx2[i,j]
m.pde = Constraint(m.x, m.t, rule=_pde)

def _initcon(m, i):
if i ==0 or i ==
return Constraint.Skip
return m.u[i,0] == sin(m.pix*i)
m.initcon = Constraint(m.x, rule=_initcon)

def _lowerbound(m, j):
return m.u[0,j] ==
m.lowerbound = Constraint(m.t, rule=_lowerbound)

def _upperbound(m, j):
return m. pixexp(—j)+m.dudx[1,j] ==
m.upperbound = Constraint(m.t, rule=_upperbound)

m.obj = Objective (expr=1)

Discretize using Finite Difference and Collocation
discretizer = TransformationFactory(’dae.finite_difference’)
discretizer2 = TransformationFactory(’dae.collocation”)
discretizer.apply-to(m, nfe=25, wrt=m.x, scheme="BACKWARD")
discretizer2.apply_to(m, nfe=20, ncp=3, wrt=m.t)

solver = SolverFactory(’ipopt”)
results = solver.solve(m, tee=True)

The implementation using pyomo . dae requires only half the number of lines of the manually discretized
model, leading to a much more concise and consequently comprehensible model. The applied discretization
schemes are completely independent of the model, and as a result, the correspondence between the alge-
braic model and the mathematical model is significantly more clear. The automatically discretized model does
not have any of the discretization-specific parameters used in the manually discretized model. Furthermore,
changing the number of finite elements, the number of collocation points, or the entire discretization scheme
is simply accomplished by modifying one of the 4 lines of code defining the discretization. To illustrate this
point, some alternative approaches to discretize the heat transfer model are as follows:

Listing 20 Alternate discretizations for heat the transfer model in Pyomo using pyomo . dae

Discretize entire model using Finite Difference Method
discretizer = TransformationFactory(’dae.finite_difference’)
discretizer.apply_to(m, nfe=25, wrt=m.x, scheme='BACKWARD")
discretizer.apply-to(m, nfe=20, wrt=m.t, scheme="FORWARD’)

Discretize entire model using Collocation

discretizer = TransformationFactory(’dae.collocation”)
discretizer.apply_-to(m, nfe=10, ncp=3, wrt=m.x, scheme=LAGRANGE-LEGENDRE")
discretizer.apply_to(m, nfe=20, ncp=3, wrt=m.t, scheme='LAGRANGERADAU")

N G R W N e

20 Bethany Nicholson, John D. Siirola, Jean-Paul Watson, Victor M. Zavala, Lorenz T. Biegler

With pyomo . dae, experimenting with the type of discretization scheme in addition to the resolution be-
comes accessible and systematic. However, we observe that not every discretization scheme is appropriate
for every model. Different boundary and initial conditions may need to be applied, depending on the model
and the discretization scheme used. The pyomo . dae package does not perform any model checking to ensure
appropriateness of the model to which a discretization scheme is applied. Rather, such checking is the respon-
sibility of the user. The pyomo . dae package, however, provides the necessary constructs to enable the user to
easily tailor the specification of boundary conditions.

5.2 Optimal Control

The purpose of optimal control problems is to find a sequence of inputs to a dynamic system that optimize
some system performance metric. For example, a typical optimization objective involves minimizing or maxi-
mizing the value of a state variable at the end of a fixed time horizon. Consider the following small example,
taken from [19]:

min xz3(ty) (5.11a)
st iy =@y (5.11b)
To=—To+ U (5.11¢)

i3 = 27 4+ 22 + 0.005 - u? (5.11d)

T3 —8-(t—0.5)2+05<0 (5.11e)

z1(0) =0, 22(0) = —1, 23(0) =0,ty =1 (5.11f)

This example consists of three state variables 1, x2, 23 and one control variable u. The following code fragment
illustrates the implementation of some of the more interesting features of this model, including the objective
function (5.11a) and the complex path constraint (5.11e).

Listing 21 Partial implementation of problem (5.11) in Pyomo using pyomo . dae

Setting the objective function
m.obj = Objective (expr=m.x3[1])

Declaring the path constraint
def _con(m,t):

return m.x2[t]—8x*(t —0.5)**2+0.5 <= 0
m.con = Constraint(m.t, rule=_con)

Discretizing problem (5.11) using orthogonal collocation with 7 finite elements and 6 collocation points
per element will result in the optimal profiles shown in the top portion of Figure 3. In this solution, the con-
trol variable is allowed to vary at every time point. In many applications this sort of continuous change in
the control variable is undesirable or impossible to implement. Therefore, in practice, control variables are
often restricted to be piecewise constant over a certain time interval. Such restrictions can be easily imple-
mented using pyomo . dae, using the reduce_collocation_points () method of the dae.collocation
discretization transformation. We illustrate use of this method in the code fragment presented below. The last
line of the fragment restricts the control variable u to only 1 free collocation point per finite element, rendering
it piecewise constant. The resulting state and control profiles are shown in the bottom of Figure 3. If instead
we wanted the control variable to be piecewise linear we would only have to modify the 'ncp” keyword argu-
ment in the reduce_collocation_points () method call to 'ncp=2’, which would yield two free collocation
points (degrees of freedom) for the control variable per finite element.

pyomo . dae: A Modeling and Automatic Discretization Framework for Optimization with Differential and Algebraic Equations 21

Listing 22 Code for discretizing the optimal control model and reducing the degrees of freedom

Discretize model using radau collocation
discretizer = TransformationFactory (’dae.collocation”)
discretizer.apply-to(model, wrt=model.t, nfe=7, ncp=6)

Restrict control to be piecewise constant
discretizer.reduce_collocation_points (model, var=model.u, ncp=1, contset=model.t)

02— —r— 4 :
. N 12 4
0.0 10 |
-0.2 8]
N, E 6 |
i
-0.4}, _"' ‘/_f b Al |
F -
-0.6 8 2F 1
I — X1 of
-0.8¢ 1

186 02 04 06 o8 10 60 02 04 06 08 10

0.2
0.0
-0.2
-0.4

-0.6

-0.8

190 02z 04 06 08 10 00 02 04 06 08 10
Time Time

Fig.3 Solution to the optimal control problem (top) with no restrictions on the control variable and (bottom) restricting the control variable
to be piecewise constant. Black dotted line shows the inequality path constraint.

10

1

12

13

15

16

22 Bethany Nicholson, John D. Siirola, Jean-Paul Watson, Victor M. Zavala, Lorenz T. Biegler

5.3 Parameter Estimation for Disease Transmission

Our next application considers a non-linear parameter estimation problem taken from [30]. The objective of
this problem is to estimate parameters for a model of childhood infectious disease, using real-world disease
case data. The mathematical model for this problem is as follows:

min - wy Z(%)Q + wg Z(€¢k)2 (5.12a)
i€EF keT
s.t. ‘fo _h (y(t)}vs(t)[®) _ er(t) + B(t) (5.12b)
% = AWlE)SWI) (y(t))i(t) 1) 4) - 1) (5.12)
do _ Bly(t))S)I(t)
o= ~ + €r(t) (5.12d)
Ry = mi(¢ik — Gik—1) +€g,, KET (5.12¢)
Br =8 B ke T (5.12f)
_ Yier A
1.0 = ﬁ (5.12g)
‘_Zi}'si ’_Zk Tﬁk
$=Tnm 7 Tenm (5:12h)
0<I(t), St <N, 0<B(y®), 0<aot) (5.12i)

In this model, S represents the number of people susceptible to the disease, I denotes the number of people
with the disease who are infectious, and ¢ denotes the cumulative incidence of the disease. The R* quantity
corresponds to the reported incidence of the disease and is a known input at a discrete set of reporting times.
For a more detailed description of this model, we refer the reader to [30].

The purpose of this model is to estimate the time-varying disease transmission parameter 5 under the
assumption that 3 varies seasonally but is constant from year to year (controlling for season). This hypothesis
induces the following structural elements to the temporal data: 7, the set of reporting times over a single
year, and F, the set of all reporting times over a 20 year period. The set F is represented by the pyomo . dae
continuous set model . TIME. The following code fragment below shows how equation (5.12d) is implemented
accounting for these two time sets:

Listing 23 Code for declaring a subset of the components and implementing the differential equation (5.12d) in the disease transmission
model

model . TIME = ContinuousSet(initialize=_TIME_init, bounds=(0,None))
model.beta = Var(model.S_.BETA, initialize=_init_beta , bounds=(0.01,5))
model.S = Var(model . TIME, initialize=_init_S , bounds=_people_bounds)
model.I = Var(model.TIME, initialize=_init_.I , bounds=_people_bounds)
model.phi = Var(model . TIME, initialize=_init_phi, bounds=(0,None))
model.Sdot = DerivativeVar(model.S, initialize=_init_Sdot)
model.Idot = DerivativeVar(model.I, initialize=_init_Idot)
model. phidot = DerivativeVar(model.phi, initialize=_init_phidot, bounds=(—10,None))
def _phidot_eq(model,i):

if i ==

return Constraint.Skip

fe = model . TIME. get_upper_element_boundary (i)

j = model. TIME. _fe .index(fe)

return model. phidot[i] == model.eps_I[j] \

+ (model.beta[model .P.BETANDX][j]]*model.I[i]+model.S[i])/model.P_POP

model. phidot_eq = Constraint(model.TIME, rule=_phidot_eq)

pyomo . dae: A Modeling and Automatic Discretization Framework for Optimization with Differential and Algebraic Equations 23

Manual Discretization | Using pyomo.dae
Creation Time (sec) 1.38 2.20
Solve Time (CPU sec) 2.65 2.57
Ipopt Iterations 27 27
Objective (x107°) 1.4716 1.4716

Table 2 Comparison of two implementations of the disease transmission parameter estimation problem

In this example, lines 12 and 13 take a time point ¢ € F and determine the corresponding upper finite element
boundary fe. The parameter model .P_BETA_NDX then maps this finite element value to the correct index in
T for model.beta.

Our infectious disease transmission model has three differential equations and was discretized with 520
finite elements and 3 collocation points per finite element, using orthogonal collocation with Lagrange poly-
nomials and Radau roots. This leads to an non-linear program with 10,458 variables and 9,910 equality con-
straints. The model was discretized such that all finite element points correspond to a reporting time for R*.
As with our previous applications example, the model was implemented twice: manually, as reported in [30],
and using pyomo . dae, by the authors. Table 2 compares timing and solution statistics for the two implemen-
tations. The creation time refers to the amount of time required to execute the python script that constructs the
model. For the implementation using pyomo . dae, the creation time also includes the time for automatic dis-
cretization. If we compare the creation time for the two implementations, we observe no significant differences
- implying that there is relatively little overhead associated with applying the discretization automatically.

Comparing the solver results for the two implementations, we see analogous results. In particular, the solve
time for the two models is practically identical, and Ipopt requires the same number of iterations to locate an
optimal solution. While the model creation time results reported in Table 2 show minimal differences between
the two implementations, the statistics do not account for one crucial component of the applications devel-
opment process: the time required to design, implement, debug, and refine the manual discretization. Initial
manual implementation and debugging of a discretization scheme like collocation can easily take over an hour
for novice modelers, for a model with a single differential equation. In contrast, incorporating a differential
equation using pyomo . dae into an optimization model is as simple as writing a regular model constraint and
selecting a particular discretization scheme to apply can be accomplished in a fraction of the time.

Finally, we consider the issue of model initialization, which is a critical step in solving optimization models
with differential equations. The following code fragment shows how the variable S is initialized in our disease
transmission model:

Listing 24 Code for initializing S in the disease transmission model

def _init_S (model,i):
if i==0:
return model.init_S_init
fe = model . TIME. get_upper_element_boundary (i)
j = model. TIME. _fe .index(fe)
return model.init_S[j]
def _people_bounds(model):
return (0.0, model.P_POP)
model.S = Var(model . TIME, initialize=_init_S, bounds=_people_bounds)

This example is only one illustration of how a pyomo.dae model can be initialized. However, other al-
ternatives are available. In particular, the approach presented above initializes the finite element points using
a profile defined by the time-varying parameter model.init_S and initializes the intermediate collocation
points by equating them to the value at the upper finite element boundary. We chose this initialization ap-
proach because it is sufficiently flexible to handle discretizations with any number of collocation points. The
pyomo.dae package does not currently provide any automatic frameworks for model initialization. However,
using existing Pyomo and Python constructs, a user can create any requisite initializations.

I T - R N

24 Bethany Nicholson, John D. Siirola, Jean-Paul Watson, Victor M. Zavala, Lorenz T. Biegler

5.4 Stochastic Optimal Control of Natural Gas Networks

In our last application example, we consider the problem of optimizing natural gas network inventories while
accounting for uncertainties in the system. Specifically, the objective is to satisfy uncertain gas demands in the
network by building up inventory in the pipelines in a way that minimizes the required compression power.
A model of this problem was proposed in [31], which is as follows:

minz Z CsSi t AT + Z Z CePp AT + Z Z ca(djs —dj)? (5.13a)

teT i€S, teT Lel teT jeD
+ Z ZCT(pe,T,k —prok)’ + Z ZCT(fe,T,k — fron)? (5.13b)
keX LeL keX teL
o) T e 0L, 7 [0,T] (5.13¢)
or ’ ox
8fg(l‘,7') _ _C2€8pf('ra7—) 3 fz(.ﬁU,T)|fg($,7')|’ = [’7 = [O;Ldv re [O,T] (513d)
ot Y ’ pe(, 7)

pg(Lg,T) = 6‘,«66(2) (T)7f S E, T E [O7T] (5.136)
pg(O,T) = esnd(f)(’r)v te 'C'pv TE [OvT} (513f)
pf(OaT) = esnd(f) (T) + AGZ(T)v le [’av TE [Oa T] (513g)
Z fo(Le,) — Z fe(0,7) + Z si(T) — Z dj(t) =0, ne N 7¢€l0,T] (5.13h)

LeLyee LeLsnd €Sy jED,
Bunao)(7) + A0 (r)\ T .
Pu(r)=c, T - fs(0,7) (sma(©)(7) AT)) —1),teL, 7e0,T] (5.13i)

asnd(é) (T)
Hsup(i)ﬁ = G_f“p, 1 E S, T € [O,T] (513])
0= —CLKW, leLl, ze [O,Lz] (5.13k)
A G R G |G| Ry (5.131)
’ ox ’ pe(z,0)

PE<P(r)<PV,leL, T€[0,T] (5.13m)
05" < Ognaqey (1) < 054V, L € Ly, T €[0,T) (5.13n)
07" < Osnae) () + Abe(7) < 0], L € Lo, 7 €0,T] (5.130)

This model includes detailed network dynamics captured by the PDEs (5.13c) and (5.13d). Note that these
PDEs are indexed by the number of links £ in the network, indicating that optimization of even moderately-
sized networks will require the simultaneous solution of many PDEs. Uncertainty is captured by considering
multiple scenarios for natural gas demand, and the resulting formulation is a two-stage stochastic optimization
problem. Because they describe scenario-specific dynamics, model PDEs are replicated for each scenario. The
resulting optimization model is very large-scale, scaling as a function of the number of network links, scenar-
ios, and discretization points. The implementations in pyomo . dae for the PDEs and the pressure boundary
conditions for this model are given in Listings 25 and 26.

Listing 25 Code for implementing the PDE equations (5.13c) and (5.13d)

First PDE for gas network model
def flow_rule(m,j,i,t, k):
if t == m.TIME. first() or k == m.DIS. last ():
return Constraint.Skip # Do not apply pde at initial time or final location
return m.dpxdt[j,i,t,k]/3600 + m.c1[i]/m.1llength[i]sm.dfxdx[j,i,t, k] ==
model. flow = Constraint (model.SCEN, model.LINK, model.TIME, model . DIS, rule=flow _rule)

Second PDE for gas network model
def press_rule(m,j,i,t, k):

10

11

12

13

14

15

16

17

18

1

12

14

15

16

17

pyomo . dae: A Modeling and Automatic Discretization Framework for Optimization with Differential and Algebraic Equations 25

if t == m.TIME. first() or k == m.DIS. last ():
return Constraint.Skip # Do not apply pde at initial time or final location
return m. dfxdt[j,i,t,k]/3600 == —-m.c2[i]/m.llength[i]*m.dpxdx[j,i,t, k] — m.slack[j,i,t, k]
model. press = Constraint(model.SCEN, model.LINK, model.TIME, model .DIS, rule=press_rule)

def slackeq-rule(m,j,i,t, k):
if t == m.TIME. last ():
return Constraint.Skip
return m.slack[j,i,t, k]sm.px[j,i,t, k] ==m.c3[i]+m.fx[j,i,t, k]sm. fx[j, i, t, k]
model. slackeq = Constraint(model.SCEN, model.LINK, model.TIME, model . DIS, rule=slackeq_rule)

Listing 26 Code for implementing the pressure boundary conditions (5.13e), (5.13f), and (5.13g)

boundary conditions pressure, passive links
def presspas.start_rule(m,j,i, t):
return m.px[j,i,t m.DIS. first ()] == m.p[j m.1startloc[i], t]
model. presspas_start = Constraint (model.SCEN, model.LINK_P,model . TIME, rule=presspas_start_rule)

def presspas_end._rule(m,j,i,t):
return m.px[j,i,t m.DIS.last ()] == m.p[j ,m.lendloc[i],t]
model. presspas_end = Constraint (model.SCEN, model.LINK_P,model.TIME, rule=presspas_end_rule)

boundary conditions pressure, active links
def pressact_start_rule(m,j,i, t):
return m.px[j,i,t,m.DIS. first ()] == m.p[j m.1startloc[i], t]+m.dp[j, i, t]
model. pressact_start = Constraint (model.SCEN, model.LINK_A, model . TIME, rule=pressact_start_rule)

def pressact_end._rule(m,j,i,t):
return m.px[j,i,t m.DIS.last ()] == m.p[j ,m.lendloc[i],t]
model. pressact_end = Constraint(model.SCEN, model.LINK_A, model . TIME, rule=pressact_end_rule)

The model includes two continuous domains: temporal and spatial. The model was discretized in time us-
ing a backward finite difference scheme and was discretized in space using a forward finite difference scheme.
Discretization involved 47 time intervals and multiple numbers of spatial points. Table 3 reports the compu-
tational effort required for different spatial discretization resolutions. Figure 4 illustrates how the flow profile
converges as the number of discretization points (/V,) increases. The largest problem solved had over 400,000
variables and constraints. Note that the creation time for the model is only a small fraction of the overall so-
lution time. Again, the creation time includes the time to apply a discretization scheme automatically. We also
see that the creation time does not increase as dramatically as the solve time as the number of discretization
points is increases. This result suggests that the automatic discretization routines in pyomo . dae are scalable.

Table 3 Effect of spatial discretization resolution on computational performance

Scenarios N, | Variables Constraints Iterations Creation (sec) Solve (sec)
1 2 9686 9144 35 0.64 2.27
1 6 25718 25128 45 1.71 11.85
1 10 41750 41112 43 2.92 19.26
1 20 81830 81072 50 5.87 40.84
1 60 242150 240912 56 17.72 147.72
1 100 402470 400752 67 31.54 412.18
3 2 29056 27872 37 1.84 17.50
3 10 125248 123776 54 8.96 124.44
3 20 245488 243656 64 18.07 276.18

We note that the model reported in [31] was first implemented in Pyomo using a manual discretization
scheme. During the process of converting the manually discretized model to pyomo . dae we actually discov-
ered an “off-by-one” error in the manual discretization. These sort of errors are easy to make and often difficult

26 Bethany Nicholson, John D. Siirola, Jean-Paul Watson, Victor M. Zavala, Lorenz T. Biegler

115

11.0

10.5

10.0

Flow [scmx10~6/day]

e—e 10

e—e 20

—e 60

—e 100

200 400 600 800 1000
Length [km]

9.00

1200 1400 1600

Fig. 4 Optimal axial flow profile in a single-scenario gas network for different resolutions. Darker colors indicate more discretization
points.

to find, given the complexity of such models. In contrast, pyomo . dae provides a concise and automatic way
of discretizing the variables and constraints in a model.

We again highlight that pyomo . dae does not perform any model checking. Therefore, users must specify
a well-posed model and select discretization schemes that are appropriate for their model. In this particular
example, we highlight the need for the user to supress the enforcement of the PDE at certain domain bound-
aries (as shown in Listing 25) in order to ensure consistency between the specified boundary conditions and
the applied discretization scheme.

6 Conclusions and Future Directions

The level of modeling abstraction provided by pyomo.dae enables the development of novel formulations
and the implementation of generalized analysis frameworks. For example, consider common applications of
dynamic optimization, such as model predictive control (MPC). These applications require solution of a se-
quence of related optimization problems with differential equation components. Using pyomo . dae, users can
implement such strategies as general frameworks, independent of the system model to which they are applied.
In fact, a general implementation of MPC has already been implemented using this framework [28].

Furthermore, there is the strong potential for pyomo . dae to be used in multigrid / multiscale applications.
By separating the model from the discretization scheme, we enable general implementations of algorithms
requiring either (1) the sequential solution of problems with different discretization resolutions or (2) the ability
to communicate discretization information to specialized solvers.

In addition to the core modeling components available in any algebraic modeling language, Pyomo in-
cludes specialized packages for expressing generalized disjunctive programming (GDP) and stochastic pro-
gramming (SP) problems. These extensions leverage the modular design of Pyomo and can be combined with
pyomo . dae. For example, Pyomo users can now easily represent GDP problems with differential equations
or SP problems incorporating a dynamic model in each scenario. By providing users a straightforward way
to represent such complex models, our goal is to ultimately enable the development of new algorithms for
solving them.

In the course of developing pyomo . dae, our design emphasis was on syntactic flexibility. This does not
imply that models with every conceivable differential equation can be solved using this package. Also, because

pyomo . dae: A Modeling and Automatic Discretization Framework for Optimization with Differential and Algebraic Equations 27

we are not enforcing specific structure(s) on the differential equations or restricting the order of the derivatives,
we do not check for modeling errors or consistency. Rather, the responsibility falls on the user not to implement
an inconsistent model. A similar observation also applies to general algebraic modeling languages in which
the user is responsible for not implementing models with incompatible constraints or empty feasible regions,
for instance. However, with the availability of pyomo . dae, it is now possible to develop templates that create
models with certain canonical structures, and as a result prevent users from specifying incompatible models.
Further, such templates would allow implementation of solution algorithms tailored for specific structures, to
check for modeling errors, and to more easily interface with other existing DAE solvers.

Currently pyomo . dae can only be used to express models with bounded rectangular continuous domains.
In the future we plan on extending the package to represent unbounded domains, making it easier to represent
control problems over infinite horizons. We also plan on adding a modeling component to represent integrals.

The pyomo . dae package includes a variety of discretization transformations as well as a framework for
users to implement their own custom discretization strategies. However, simultaneous discretization is just one
of several approaches available. Single and multiple shooting methods are other common solution strategies
[8,29,20]. We plan to eventually link pyomo . dae to existing integrators, such as Sundials [16], and then add
implementations of shooting methods. An integrator would also allow us to simulate dynamic models in order
to initialize our discretized optimization problem or develop hybrid discretization / shooting algorithms.

Another useful extension of pyomo.dae would involve the development of more sophisticated frame-
works for model initialization and specification of time dependent data. In the current implementation a user
can provide an initialization for a model after it has been discretized. However, this is not entirely straight-
forward, and the initialization is tied to the discretization applied. We would also like to implement several
data interpolation schemes in order to make this initialization process easier and consistent across any choice
of discretization. An interpolation scheme would also be useful for estimating differential variable values at
any point in the continuous domain after the model has been solved, especially in the case of a collocation
discretization where a high order functional form of the state profile already exists. An automatic, element-by-
element initialization would be another possible extension.

Acknowledgements We thank Carl D. Laird for useful technical discussions and for providing the disease transmission model. Victor
M. Zavala acknowledges funding from the U.S. Department of Energy Early Career program. The research was supported in part by the
U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, Applied Mathematics program under
contract number KJ0401000 through the Project “Multifaceted Mathematics for Complex Energy Systems”. Sandia is a multi-program
laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy’s National Nuclear
Security Administration under Contract DE-AC04-94-AL85000.

References

1. Akesson, J., Arzén, K.E., Gafvert, M., Bergdahl, T., Tummescheit, H.: Modeling and optimization with Optimica and JModelica.org
languages and tools for solving large-scale dynamic optimization problems. Computers & Chemical Engineering 34(11), 1737-1749
(2010)

2. Andersson, J.: A general-purpose software framework for dynamic optimization. PhD thesis, Arenberg Doctoral School, KU Leuven,
Department of Electrical Engineering (ESAT/SCD) and Optimization in Engineering Center, Kasteelpark Arenberg 10, 3001-Heverlee,
Belgium (2013)

3. Ascher, U.M., Mattheij, R M., Russell, R.D.: Numerical solution of boundary value problems for ordinary differential equations, vol. 13.
SIAM (1994)

4. Ascher, UM, Petzold, L.R.: Computer methods for ordinary differential equations and differential-algebraic equations, vol. 61. SIAM
(1998)

5. Betts, J.T.: Sparse Optimization Suite (SOS). Applied Mathematical Analysis, LLC (2013)

6. Betts,].T., Huffman, W.P.: Sparse Optimal Control Software SOCS. Mathematics and Engineering Analysis Technical Document MEA-
LR-085, Boeing Information and Support Services, The Boeing Company, PO Box 3707, 98,124-2207 (1997)

7. Biegler, L.T.: Nonlinear Programming: Concepts, Algorithms, and Applications to Chemical Processes. SIAM (2010)

8. Bock, H.G,, Plitt, K.J.: A multiple shooting algorithm for direct solution of optimal control problems. Proceedings of the IFAC World
Congress (1984)

28 Bethany Nicholson, John D. Siirola, Jean-Paul Watson, Victor M. Zavala, Lorenz T. Biegler
9. Brenan, K.E., Campbell, S.L., Petzold, L.R.: Numerical solution of initial-value problems in differential-algebraic equations, vol. 14.
SIAM (1996)

10. Butcher, J.: Numerical Methods for Ordinary Differential Equations. Wiley (2003). URL https://books.google.com/books?id=
nYuDWkxhDGUC

11. Corporation, G.D.: General Algebraic Modeling System (GAMS) Release 24.2.1. Washington, DC, USA (2013). URL http://www.
gams .com/

12. Fourer, R., Gay, D., Kernighan, B.: AMPL: A Modeling Language for Mathematical Programming. Scientific Press (1993). URL https:
//books.google.com/books?id=8vIQAAAAMAAT

13. Hart, W.,, Laird, C., Watson, J., Woodruff, D.: Pyomo-optimization modeling in Python, vol. 67. Springer Science & Business Media
(2012)

14. Hart, W., Watson,]., Woodruff, D.: Pyomo: modeling and solving mathematical programs in Python. Mathematical Programming
Computation 3(3), 219-260 (2011)

15. Hendengren, J.: APMonitor modeling language (2014). URL http://APMonitor.com

16. Hindmarsh, A.C., Brown, PN., Grant, K.E., Lee, S.L., Serban, R., Shumaker, D.E., Woodward, C.S.: SUNDIALS: Suite of nonlinear
and differential/algebraic equation solvers. ACM Trans. Math. Softw. 31(3), 363-396 (2005). DOI 10.1145/1089014.1089020. URL
http://doi.acm.org/10.1145/1089014.1089020

17. Houska, B., Ferreau, H., Diehl, M.: ACADO Toolkit — an open source framework for automatic control and dynamic optimization.
Optimal Control Applications and Methods 32(3), 298-312 (2011)

18. Hultberg, T.: FlopC++ an algebraic modeling language embedded in C. In: in Operations Research Proceedings 2006, ser. Operations
Research Proceedings, K.-H. Waldmann and, pp. 187-190. Springer (2006)

19. Jacobson, D., Lele, M.: A transformation technique for optimal control problems with a state variable inequality constraint. Automatic
Control, IEEE Transactions on 14(5), 457464 (1969). DOI 10.1109/TAC.1969.1099283

20. Kraft, D.: On converting optimal control problems into nonlinear programming problems. In: Computational mathematical program-
ming, pp. 261-280. Springer (1985)

21. Leyffer, S., Kirches, C.: TACO - a toolkit for AMPL control optimization. Mathematical Programming Computation pp. 1-39 (2013)

22. Lubin, M., Dunning, I.: Computing in operations research using julia. INFORMS Journal on Computing 27(2), 238-248 (2015). DOI
10.1287/ijoc.2014.0623. URL http://dx.doi.org/10.1287/1ijoc.2014.0623

23. MATLAB: MATLAB function reference, chap. pdepe, pp. 6386-6397. The MathWorks Incorporated (2015)

24. Mitchell, S., O’Sullivan, M., Dunning, I.: PuLP: A linear programming toolkit for Python (2011)

25. Patterson, M.A., Rao, A.V.: GPOPS-II: A MATLAB software for solving multiple-phase optimal control problems using hp-adaptive
gaussian quadrature collocation methods and sparse nonlinear programming. ACM Trans. Math. Softw. 41(1), 1:1-1:37 (2014). DOI
10.1145/2558904. URL http://doi.acm.org/10.1145/2558904

26. Process Systems Enterprise: gPROMS (1997-2014). URL www . psenterprise.com/gproms

27. Rutquist, P., Edvall, M.: PROPT — Matlab optimal control software. Tomlab Optimization Inc (2010)

28. Santamara, FL., Gmez, J.M.: Framework in {PYOMO} for the assessment and implementation of (as)nmpc controllers. Com-
puters & Chemical Engineering 92, 93 — 111 (2016). DOI http://dx.doi.org/10.1016/j.compchemeng.2016.05.005. URL http:
//www.sciencedirect.com/science/article/pii/S0098135416301533

29. Sargent, R., Sullivan, G.: The development of an efficient optimal control package. In: Optimization Techniques, pp. 158-168. Springer
(1978)

30. Word, D.P.:: Nonlinear programming approaches for efficient large-scale parameter estimation with applications in epidemiology. PhD
thesis, Texas A&M University, Department of Chemical Engineering, College Station, TX (2013)

31. Zavala, V.M.: Stochastic optimal control model for natural gas networks. ~Computers & Chemical Engineering 64, 103 —

113 (2014). DOI http://dx.doi.org/10.1016/j.compchemeng.2014.02.002. URL http://www.sciencedirect.com/science/
article/pii/S0098135414000349

https://books.google.com/books?id=nYuDWkxhDGUC
https://books.google.com/books?id=nYuDWkxhDGUC
http://www.gams.com/
http://www.gams.com/
https://books.google.com/books?id=8vJQAAAAMAAJ
https://books.google.com/books?id=8vJQAAAAMAAJ
http://APMonitor.com
http://doi.acm.org/10.1145/1089014.1089020
http://dx.doi.org/10.1287/ijoc.2014.0623
http://doi.acm.org/10.1145/2558904
www.psenterprise.com/gproms
http://www.sciencedirect.com/science/article/pii/S0098135416301533
http://www.sciencedirect.com/science/article/pii/S0098135416301533
http://www.sciencedirect.com/science/article/pii/S0098135414000349
http://www.sciencedirect.com/science/article/pii/S0098135414000349

	Introduction and Motivation
	Modeling Differential Equations Using pyomo.dae
	Discretization Transformations
	Package Implementation and Extensibility
	Illustrative Applications
	Conclusions and Future Directions

